| Title: | Information-Theoretic Measure of Causality |
| Version: | 1.0 |
| Description: | Methods for quantifying temporal and spatial causality through information flow, and decomposing it into unique, redundant, and synergistic components, following the framework described in Martinez-Sanchez et al. (2024) <doi:10.1038/s41467-024-53373-4>. |
| License: | GPL-3 |
| Encoding: | UTF-8 |
| RoxygenNote: | 7.3.3 |
| URL: | https://stscl.github.io/infocausality/, https://github.com/stscl/infocausality |
| BugReports: | https://github.com/stscl/infocausality/issues |
| Depends: | R (≥ 4.1.0) |
| LinkingTo: | Rcpp |
| Imports: | methods, reticulate (≥ 1.41.0), sdsfun, sf, terra |
| Suggests: | gdverse, ggplot2, knitr, Rcpp, rmarkdown, spEDM, tEDM |
| VignetteBuilder: | knitr |
| NeedsCompilation: | yes |
| Packaged: | 2025-10-29 11:25:13 UTC; 31809 |
| Author: | Wenbo Lv |
| Maintainer: | Wenbo Lv <[email protected]> |
| Repository: | CRAN |
| Date/Publication: | 2025-11-03 18:30:08 UTC |
synergistic-unique-redundant decomposition of causality
Description
synergistic-unique-redundant decomposition of causality
Usage
## S4 method for signature 'data.frame'
surd(
data,
target,
agents,
lag = 1,
bin = 5,
max.combs = NULL,
cores = 1,
backend = "threading"
)
## S4 method for signature 'sf'
surd(
data,
target,
agents,
lag = 1,
bin = 5,
max.combs = NULL,
cores = 1,
backend = "threading",
nb = NULL
)
## S4 method for signature 'SpatRaster'
surd(
data,
target,
agents,
lag = 1,
bin = 5,
max.combs = NULL,
cores = 1,
backend = "threading"
)
Arguments
data |
observation data. |
target |
name of the target variable. |
agents |
names of agent variables. |
lag |
(optional) lag order. |
bin |
(optional) number of discretization bins. |
max.combs |
(optional) maximum combination order. If |
cores |
(optional) number of cores for parallel computation. |
backend |
(optional) |
nb |
(optional) neighbours list. |
Value
A list.
- unique
Unique information contributions per variable.
- synergistic
Synergistic information components by agent combinations.
- redundant
Redundant information shared by agent subsets.
- mutual_info
Mutual information measures for each combination.
- info_leak
Information leak ratio.
References
Martinez-Sanchez, A., Arranz, G. & Lozano-Duran, A. Decomposing causality into its synergistic, unique, and redundant components. Nat Commun 15, 9296 (2024).
Examples
columbus = sf::read_sf(system.file("case/columbus.gpkg", package="spEDM"))
tryCatch(
surd(columbus, "hoval", c("inc", "crime")),
error = \(e) message("Skipping Python-dependent example: ", e$message)
)